AI / ML
NumPy Basics
Numerical computing
NumPy Basics
NumPy (Numerical Python) is a fundamental library for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions to operate on these arrays.
Install NumPy
pip install numpy
Import NumPy
import numpy as np
Create Arrays
# Create a 1D array
arr = np.array([1, 2, 3, 4, 5])
print(arr) # [1 2 3 4 5]
# Create a 2D array
arr2d = np.array([[1, 2, 3], [4, 5, 6]])
print(arr2d)
# Create array with zeros
zeros = np.zeros((3, 4))
print(zeros)
# Create array with ones
ones = np.ones((2, 3))
print(ones)
# Create array with range
range_arr = np.arange(0, 10, 2)
print(range_arr) # [0 2 4 6 8]
Array Operations
a = np.array([1, 2, 3])
b = np.array([4, 5, 6])
# Addition
print(a + b) # [5 7 9]
# Multiplication
print(a * 2) # [2 4 6]
# Dot product
print(np.dot(a, b)) # 32
# Mean
print(np.mean(a)) # 2.0
# Max and Min
print(np.max(a)) # 3
print(np.min(a)) # 1
Array Shape and Reshape
arr = np.array([[1, 2, 3], [4, 5, 6]])
print(arr.shape) # (2, 3)
# Reshape
reshaped = arr.reshape(3, 2)
print(reshaped)
Tip: NumPy arrays are much faster than Python lists for numerical operations, especially with large datasets.